TL_GPRSM.utils package¶
Submodules¶
TL_GPRSM.utils.metrics module¶
- TL_GPRSM.utils.metrics.mae(y_true, y_pred)¶
Mean absolute error
- Parameters:
y_true (np.array) – true values
y_pred (np.array) – predicted values
- Returns:
MAE
- Return type:
float
- TL_GPRSM.utils.metrics.mape(y_true, y_pred)¶
Mean absolute percentage error
- Parameters:
y_true (np.array) – true values
y_pred (np.array) – predicted values
- Returns:
MAPE
- Return type:
float
- TL_GPRSM.utils.metrics.me(y_true, y_pred)¶
Mean error
- Parameters:
y_true (np.array) – true values
y_pred (np.array) – predicted values
- Returns:
ME
- Return type:
float
- TL_GPRSM.utils.metrics.mpe(y_true, y_pred)¶
Mean percentage error
- Parameters:
y_true (np.array) – true values
y_pred (np.array) – predicted values
- Returns:
MPE
- Return type:
float
- TL_GPRSM.utils.metrics.mse(y_true, y_pred)¶
Mean squared error
- Parameters:
y_true (np.array) – true values
y_pred (np.array) – predicted values
- Returns:
MSE
- Return type:
float
- TL_GPRSM.utils.metrics.msle(y_true, y_pred)¶
Mean squared logarithmic error
- Parameters:
y_true (np.array) – true values
y_pred (np.array) – predicted values
- Returns:
MSLE
- Return type:
float
- TL_GPRSM.utils.metrics.r2_index(y_true, y_pred)¶
R2 index
- Parameters:
y_true (np.array) – true values
y_pred (np.array) – predicted values
- Returns:
R2 index
- Return type:
float
- TL_GPRSM.utils.metrics.rmse(y_true, y_pred)¶
Root mean squared error
- Parameters:
y_true (np.array) – true values
y_pred (np.array) – predicted values
- Returns:
RMSE
- Return type:
float
- TL_GPRSM.utils.metrics.rmsle(y_true, y_pred)¶
Root mean squared logarithmic error
- Parameters:
y_true (np.array) – true values
y_pred (np.array) – predicted values
- Returns:
RMSLE
- Return type:
float
- TL_GPRSM.utils.metrics.rmspe(y_true, y_pred)¶
Root mean squared percentage error
- Parameters:
y_true (np.array) – true values
y_pred (np.array) – predicted values
- Returns:
RMSPE
- Return type:
float
- TL_GPRSM.utils.metrics.wmae(y_true, y_pred, weights)¶
Weighted mean absolute error
- Parameters:
y_true (np.array) – true values
y_pred (np.array) – predicted values
weights (np.array) – weights
- Returns:
WMAE
- Return type:
float
- TL_GPRSM.utils.metrics.wmape(y_true, y_pred, weights)¶
Weighted mean absolute percentage error
- Parameters:
y_true (np.array) – true values
y_pred (np.array) – predicted values
weights (np.array) – weights
- Returns:
WMAPE
- Return type:
float
TL_GPRSM.utils.sampling module¶
- TL_GPRSM.utils.sampling.latin_hypercube_sampling(sampling_num, dim, center=False, seed=None)¶
Latin hypercube sampling
- Parameters:
sampling_num (int) – number of sampling
dim (int) – dimension of sampling
center (bool, optional) – is center. Defaults to False.
seed (int, optional) – random seed. Defaults to None.
- Returns:
sampling points (number of samples x number of features)
- Return type:
numpy.ndarray
- TL_GPRSM.utils.sampling.random_sampling(sampling_num, dim, seed=None)¶
Random sampling
- Parameters:
sampling_num (int) – number of sampling
dim (int) – dimension of sampling
seed (int, optional) – random seed. Defaults to None.
- Returns:
sampling points (number of samples x number of features)
- Return type:
numpy.ndarray
- TL_GPRSM.utils.sampling.uniform_scaling(sampling_points, scale_mins, scale_maxs)¶
Uniform scaling
- Parameters:
sampling_points (np.array) – sampling points (number of samples x number of features)
scale_mins (list[float,...]) – min vals of each feature
scale_maxs (list[float,...]) – max vals of each feature
- Returns:
scaled sampling points (number of samples x number of features)
- Return type:
np.array