TL_GPRSM.models package

Submodules

TL_GPRSM.models.GPRSM module

class TL_GPRSM.models.GPRSM.GPRSM(train_x, train_y, kernel_name='Matern52', is_ard=True, normalizer='standardization')

Bases: object

get_ard_contribution(normalized=True)

get ARD contribution

Parameters:

normalized (bool, optional) – whether normalized or not. Defaults to True.

Returns:

ARD contributions

Return type:

np.array

get_part_contribution()

get contribution of each part

Returns:

contribution of common part, source part, target part (%)

Return type:

Tuple[float, float, float]

get_transfer_learning_effect()

get transfer learning effect

Returns:

effect of transfer learning (%)

Return type:

float

inverse_normalize(pred_y)

inverse normalize predicted data y

Parameters:

pred_y (np.array) – normalized predicted data y (number of samples x 1)

Returns:

inverse normalized predicted data y

Return type:

np.array

static load_model(path)

load model

Parameters:

path (str) – path to load model

Returns:

GPRSM model

Return type:

GPRSM

normalize(normalizer)

normalize training data

Parameters:

normalizer (str) – normalizer (standardization, minmax, none)

Returns:

normalized training data x and y

Return type:

np.array

normalize_x(inp_x)

normalize input data x

Parameters:

inp_x (np.array) – input data x (number of samples x number of features)

Returns:

normalized input data x

Return type:

np.array

optimize(max_iter, messages=False, num_restarts=10, parallel=True)

optimize GPR surrogate model

Parameters:
  • max_iter (int) – max iteration number

  • messages (bool, optional) – print messages. Defaults to False.

  • num_restarts (int, optional) – number of restarts. Defaults to 10.

  • parallel (bool, optional) – is parallel. Defaults to True.

Return type:

None

predict(test_x)

predict by GPR surrogate model

Parameters:

test_x (np.array) – test data x (number of samples x number of features)

Returns:

predicted mean and variance

Return type:

Tuple[np.array, np.array]

save_model(path)

save model

Parameters:

path (str) – path to save model

Return type:

None

select_kernel_func(kernel_name)

select kernel function

Parameters:

kernel_name (str) – kernel name (Matern52, Matern32, RBF, etc.)

Returns:

kernel function

Return type:

GPy.kern

set_transfer_learning(source_x, source_y)

set transfer learning

Parameters:
  • source_x (numpy.ndarray) – source data x of transfer learning (number of samples x number of features)

  • source_y (numpy.ndarray) – source data y of transfer learning (number of samples x 1)

Module contents